Logistic model trees N Landwehr, M Hall, E Frank Machine learning 59, 161-205, 2005 | 1711 | 2005 |
Logistic model trees N Landwehr, M Hall, E Frank Machine Learning: ECML 2003: 14th European Conference on Machine Learning …, 2003 | 256 | 2003 |
The future agricultural biogas plant in Germany: A vision S Theuerl, C Herrmann, M Heiermann, P Grundmann, N Landwehr, ... Energies 12 (3), 396, 2019 | 180 | 2019 |
kFOIL: Learning simple relational kernels N Landwehr, A Passerini, L De Raedt, P Frasconi Aaai 6, 389-394, 2006 | 141 | 2006 |
A nonergodic ground‐motion model for California with spatially varying coefficients N Landwehr, NM Kuehn, T Scheffer, N Abrahamson Bulletin of the Seismological Society of America 106 (6), 2574-2583, 2016 | 134 | 2016 |
From face to face: the contribution of facial mimicry to cognitive and emotional empathy H Drimalla, N Landwehr, U Hess, I Dziobek Cognition and Emotion, 2019 | 133 | 2019 |
nFOIL: Integrating naıve bayes and FOIL N Landwehr, K Kersting, L De Raedt Proceedings of the twentieth national conference on artificial intelligence …, 2005 | 119 | 2005 |
Integrating naive bayes and FOIL. N Landwehr, K Kersting, L De Raedt Journal of Machine Learning Research 8 (3), 2007 | 102 | 2007 |
Probabilistic seismic hazard analysis in California using nonergodic ground‐motion models NA Abrahamson, NM Kuehn, M Walling, N Landwehr Bulletin of the Seismological Society of America 109 (4), 1235-1249, 2019 | 83 | 2019 |
Active risk estimation C Sawade, N Landwehr, S Bickel, T Scheffer Proceedings of the 27th International Conference on Machine Learning (ICML …, 2010 | 61 | 2010 |
Towards digesting the alphabet-soup of statistical relational learning L De Raedt, B Demoen, D Fierens, B Gutmann, G Janssens, A Kimmig, ... NIPS* 2008 Workshop Probabilistic Programming, Date: 2008/12/13-2008/12/13 …, 2008 | 60 | 2008 |
Stochastic relational processes: Efficient inference and applications I Thon, N Landwehr, L De Raedt Machine Learning 82, 239-272, 2011 | 57 | 2011 |
Early detection of stripe rust in winter wheat using deep residual neural networks M Schirrmann, N Landwehr, A Giebel, A Garz, KH Dammer Frontiers in plant science 12, 469689, 2021 | 56 | 2021 |
Leaf image-based classification of some common bean cultivars using discriminative convolutional neural networks H Tavakoli, P Alirezazadeh, A Hedayatipour, AHB Nasib, N Landwehr Computers and electronics in agriculture 181, 105935, 2021 | 56 | 2021 |
Towards the automatic detection of social biomarkers in autism spectrum disorder: Introducing the simulated interaction task (SIT) H Drimalla, T Scheffer, N Landwehr, I Baskow, S Roepke, B Behnia, ... NPJ digital medicine 3 (1), 25, 2020 | 55 | 2020 |
Fast learning of relational kernels N Landwehr, A Passerini, L De Raedt, P Frasconi Machine learning 78, 305-342, 2010 | 55 | 2010 |
Optimized deep learning model as a basis for fast UAV mapping of weed species in winter wheat crops T de Camargo, M Schirrmann, N Landwehr, KH Dammer, M Pflanz Remote Sensing 13 (9), 1704, 2021 | 52 | 2021 |
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2016, Riva Del Garda, Italy, September 19-23, 2016, Proceedings, Part II P Frasconi, N Landwehr, G Manco, J Vreeken Springer, 2016 | 52 | 2016 |
Relational transformation-based tagging for activity recognition N Landwehr, B Gutmann, I Thon, L De Raedt, M Philipose Fundamenta Informaticae 89 (1), 111-129, 2008 | 44 | 2008 |
Modeling interleaved hidden processes N Landwehr Proceedings of the 25th international conference on Machine learning, 520-527, 2008 | 41 | 2008 |