Percolation on complex networks: Theory and application M Li, RR Liu, L Lü, MB Hu, S Xu, YC Zhang Physics Reports 907, 1-68, 2021 | 263 | 2021 |
Unbiased evaluation of ranking metrics reveals consistent performance in science and technology citation data S Xu, MS Mariani, L Lü, M Medo Journal of informetrics 14 (1), 101005, 2020 | 31 | 2020 |
Recommending investors for new startups by integrating network diffusion and investors’ domain preference S Xu, Q Zhang, L Lü, MS Mariani Information Sciences 515, 103-115, 2020 | 23 | 2020 |
Donald J. Trump’s Presidency in Cyberspace: A Case Study of Social Perception and Social Influence in Digital Oligarchy Era X Zheng, X Wang, Z Li, R Jing, S Xu, T Wang, L Li, Z Zhang, Q Zhang, ... IEEE Transactions on Computational Social Systems 8 (2), 279-293, 2021 | 18 | 2021 |
The local structure of citation networks uncovers expert-selected milestone papers J Wang, S Xu, MS Mariani, L Lü Journal of Informetrics 15 (4), 101220, 2021 | 10 | 2021 |
Forecasting countries' gross domestic product from patent data Y Ye, S Xu, MS Mariani, L Lü Chaos, Solitons & Fractals 160, 112234, 2022 | 9 | 2022 |
The rise and fall of countries on world trade web: A network perspective T Fan, H Li, XL Ren, S Xu, Y Gou, L Lü International Journal of Modern Physics C 32 (08), 2150121, 2021 | 7 | 2021 |
Influence fast or later: Two types of influencers in social networks F Zhou, C Su, S Xu, L Lü Chinese Physics B 31 (6), 068901, 2022 | 6 | 2022 |
Citations or dollars? Early signals of a firm’s research success S Xu, MS Mariani, L Lü, L Napolitano, E Pugliese, A Zaccaria Technological Forecasting and Social Change 201, 123208, 2024 | 3 | 2024 |
Cost effective approach to identify multiple influential spreaders based on the cycle structure in networks W Shi, S Xu, T Fan, L Lü Science China Information Sciences 66 (9), 192203, 2023 | 3 | 2023 |
Complexity Science in the Application of Big Data Economics L Lü, S Xu, N Xu by P. Chen, W. Elsner, and A. Pyka. London and New York: Routledge, 2.3, 2023 | 1 | 2023 |
Uncovering key predictors of high-growth firms via explainable machine learning Y Huang, S Xu, L Lü, A Zaccaria, MS Mariani arXiv preprint arXiv:2408.09149, 2024 | | 2024 |
A multilayer network diffusion-based model for reviewer recommendation Y Huang, S Xu, S Cai, L Lü Chinese Physics B, 2023 | | 2023 |
Modeling the dynamics of firms’ technological impact S Xu, MS Mariani, L Lü Chinese Physics B 30 (12), 120517, 2021 | | 2021 |