Xue Wang
Cited by
Cited by
CO2 electrolysis to multicarbon products at activities greater than 1 A cm− 2
FPG de Arquer, CT Dinh, A Ozden, J Wicks, C McCallum, AR Kirmani, ...
Science 367 (6478), 661-666, 2020
Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets
L Zhang, LT Roling, X Wang, M Vara, M Chi, J Liu, SI Choi, J Park, ...
Science 349 (6246), 412-416, 2015
Molecular tuning of CO 2-to-ethylene conversion
F Li, A Thevenon, A Rosas-Hernández, Z Wang, Y Li, CM Gabardo, ...
Nature 577 (7791), 509-513, 2020
CO2 electrolysis to multicarbon products in strong acid
JE Huang, F Li, A Ozden, A Sedighian Rasouli, FP García de Arquer, ...
Science 372 (6546), 1074-1078, 2021
Palladium–platinum core-shell icosahedra with substantially enhanced activity and durability towards oxygen reduction
X Wang, SI Choi, LT Roling, M Luo, C Ma, L Zhang, M Chi, J Liu, Z Xie, ...
Nature communications 6 (1), 1-8, 2015
Cooperative CO 2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces
F Li, YC Li, Z Wang, J Li, DH Nam, Y Lum, M Luo, X Wang, A Ozden, ...
Nature Catalysis 3 (1), 75-82, 2020
Efficient electrically powered CO 2-to-ethanol via suppression of deoxygenation
X Wang, Z Wang, FPG de Arquer, CT Dinh, A Ozden, YC Li, DH Nam, J Li, ...
Nature Energy 5 (6), 478-486, 2020
Pd@ Pt Core–Shell Concave Decahedra: A Class of Catalysts for the Oxygen Reduction Reaction with Enhanced Activity and Durability
X Wang, M Vara, M Luo, H Huang, A Ruditskiy, J Park, S Bao, J Liu, ...
Journal of the American Chemical Society 137 (47), 15036-15042, 2015
High-energy-surface engineered metal oxide micro-and nanocrystallites and their applications
Q Kuang, X Wang, Z Jiang, Z Xie, L Zheng
Accounts of chemical research 47 (2), 308-318, 2014
Pt-Based Icosahedral Nanocages: Using a Combination of {111} Facets, Twin Defects, and Ultrathin Walls to Greatly Enhance Their Activity toward Oxygen Reduction
X Wang, L Figueroa-Cosme, X Yang, M Luo, J Liu, Z Xie, Y Xia
Nano letters 16 (2), 1467-1471, 2016
High carbon utilization in CO2 reduction to multi-carbon products in acidic media
Y Xie#, P Ou#, X Wang#, Z Xu, YC Li, Z Wang, JE Huang, J Wicks, ...
Nature Catalysis, 1-7, 2022
Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen
M Luo, Z Wang, YC Li, J Li, F Li, Y Lum, DH Nam, B Chen, J Wicks, A Xu, ...
Nature Communications 10 (1), 1-7, 2019
Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper
Y Pang, J Li, Z Wang, CS Tan, PL Hsieh, TT Zhuang, ZQ Liang, C Zou, ...
Nature Catalysis 2 (3), 251-258, 2019
Efficient Methane Electrosynthesis Enabled by Tuning Local CO2 Availability
X Wang, A Xu, F Li, SF Hung, DH Nam, CM Gabardo, Z Wang, Y Xu, ...
Journal of the American Chemical Society 142 (7), 3525-3531, 2020
Efficient upgrading of CO to C 3 fuel using asymmetric CC coupling active sites
X Wang, Z Wang, TT Zhuang, CT Dinh, J Li, DH Nam, F Li, CW Huang, ...
Nature Communications 10 (1), 1-7, 2019
Enhancing the Photocatalytic Activity of Anatase TiO2 by Improving the Specific Facet‐Induced Spontaneous Separation of Photogenerated Electrons and Holes
C Liu, X Han, S Xie, Q Kuang, X Wang, M Jin, Z Xie, L Zheng
Chemistry–An Asian Journal 8 (1), 282-289, 2013
2022 Roadmap on Low Temperature Electrochemical CO2 Reduction
IEL Stephens, K Chan, A Bagger, SW Boettcher, J Bonin, E Boutin, ...
Journal of Physics: Energy, 2022
Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst
X Wang, P Ou, A Ozden, SF Hung, J Tam, CM Gabardo, JY Howe, J Sisler, ...
Nature Energy 7 (2), 170-176, 2022
High-Rate and Efficient Ethylene Electrosynthesis Using a Catalyst/Promoter/Transport Layer
A Ozden, F Li, FP Garcı́a de Arquer, A Rosas-Hernández, A Thevenon, ...
ACS Energy Letters 5 (9), 2811-2818, 2020
Carbon-efficient carbon dioxide electrolysers
A Ozden, FP García de Arquer, JE Huang, J Wicks, J Sisler, RK Miao, ...
Nature Sustainability, 1-11, 2022
The system can't perform the operation now. Try again later.
Articles 1–20