With or without you: predictive coding and Bayesian inference in the brain L Aitchison, M Lengyel Current opinion in neurobiology 46, 219-227, 2017 | 306 | 2017 |
Deep convolutional networks as shallow Gaussian processes A Garriga-Alonso, CE Rasmussen, L Aitchison International Conference on Learning Representations 3, 2018 | 298 | 2018 |
Understanding the effectiveness of government interventions against the resurgence of COVID-19 in Europe M Sharma, S Mindermann, C Rogers-Smith, G Leech, B Snodin, J Ahuja, ... Nature communications 12 (1), 5820, 2021 | 233 | 2021 |
Doubly Bayesian analysis of confidence in perceptual decision-making L Aitchison, D Bang, B Bahrami, PE Latham PLoS computational biology 11 (10), e1004519, 2015 | 156 | 2015 |
Bayesian neural network priors revisited V Fortuin, A Garriga-Alonso, SW Ober, F Wenzel, G Rätsch, RE Turner, ... arXiv preprint arXiv:2102.06571, 2021 | 148 | 2021 |
Cortical-like dynamics in recurrent circuits optimized for sampling-based probabilistic inference R Echeveste, L Aitchison, G Hennequin, M Lengyel Nature neuroscience 23 (9), 1138-1149, 2020 | 126 | 2020 |
Confidence matching in group decision-making D Bang, L Aitchison, R Moran, S Herce Castanon, B Rafiee, A Mahmoodi, ... Nature Human Behaviour 1 (6), 0117, 2017 | 118 | 2017 |
Zipf’s law arises naturally when there are underlying, unobserved variables L Aitchison, N Corradi, PE Latham PLoS computational biology 12 (12), e1005110, 2016 | 110* | 2016 |
Synaptic plasticity as Bayesian inference L Aitchison, J Jegminat, JA Menendez, JP Pfister, A Pouget, PE Latham Nature Neuroscience, 1-7, 2021 | 105* | 2021 |
Mask wearing in community settings reduces SARS-CoV-2 transmission G Leech, C Rogers-Smith, JT Monrad, JB Sandbrink, B Snodin, R Zinkov, ... Proceedings of the National Academy of Sciences 119 (23), e2119266119, 2022 | 102* | 2022 |
The Hamiltonian brain: Efficient probabilistic inference with excitatory-inhibitory neural circuit dynamics L Aitchison, M Lengyel PLoS computational biology 12 (12), e1005186, 2016 | 85 | 2016 |
Fast sampling-based inference in balanced neuronal networks G Hennequin, L Aitchison, M Lengyel Advances in neural information processing systems 27, 2014 | 72 | 2014 |
Active dendritic integration as a mechanism for robust and precise grid cell firing C Schmidt-Hieber, G Toleikyte, L Aitchison, A Roth, BA Clark, T Branco, ... Nature neuroscience 20 (8), 1114-1121, 2017 | 70 | 2017 |
A statistical theory of cold posteriors in deep neural networks L Aitchison arXiv preprint arXiv:2008.05912, 2020 | 64 | 2020 |
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes SW Ober, L Aitchison International Conference on Machine Learning, 8248-8259, 2021 | 56 | 2021 |
Why bigger is not always better: on finite and infinite neural networks L Aitchison International Conference on Machine Learning, 156-164, 2020 | 55 | 2020 |
Deep kernel processes L Aitchison, A Yang, SW Ober International Conference on Machine Learning, 130-140, 2021 | 43 | 2021 |
Data augmentation in Bayesian neural networks and the cold posterior effect S Nabarro, S Ganev, A Garriga-Alonso, V Fortuin, M van der Wilk, ... Uncertainty in Artificial Intelligence, 1434-1444, 2022 | 31 | 2022 |
Model-based Bayesian inference of neural activity and connectivity from all-optical interrogation of a neural circuit L Aitchison, L Russell, AM Packer, J Yan, P Castonguay, M Hausser, ... Advances in neural information processing systems 30, 2017 | 30 | 2017 |
InfoNCE is variational inference in a recognition parameterised model L Aitchison, S Ganev arXiv preprint arXiv:2107.02495, 2021 | 28* | 2021 |