Follow
Marc-Andre Schulz
Marc-Andre Schulz
Verified email at charite.de
Title
Cited by
Cited by
Year
Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets
MA Schulz, BTT Yeo, JT Vogelstein, J Mourao-Miranada, JN Kather, ...
Nature communications 11 (1), 1-15, 2020
2402020
Analysing humanly generated random number sequences: a pattern-based approach
MA Schulz, B Schmalbach, P Brugger, K Witt
PloS one 7 (7), e41531, 2012
532012
Promises and pitfalls of deep neural networks in neuroimaging-based psychiatric research
F Eitel, MA Schulz, M Seiler, H Walter, K Ritter
Experimental Neurology 339, 113608, 2021
442021
Deep learning for brains?: Different linear and nonlinear scaling in UK Biobank brain images vs. machine-learning datasets
MA Schulz, BTT Yeo, JT Vogelstein, J Mourao-Miranada, JN Kather, ...
BioRxiv, 757054, 2019
352019
Performance reserves in brain-imaging-based phenotype prediction
MA Schulz, D Bzdok, S Haufe, JD Haynes, K Ritter
Cell Reports 43 (1), 2024
332024
Inferring disease subtypes from clusters in explanation space
MA Schulz, M Chapman-Rounds, M Verma, D Bzdok, K Georgatzis
Scientific Reports 10 (1), 12900, 2020
332020
FIMAP: Feature importance by minimal adversarial perturbation
M Chapman-Rounds, U Bhatt, E Pazos, MA Schulz, K Georgatzis
Proceedings of the AAAI Conference on Artificial Intelligence 35 (13), 11433 …, 2021
182021
A cognitive fingerprint in human random number generation
MA Schulz, S Baier, B Timmermann, D Bzdok, K Witt
Scientific reports 11 (1), 1-7, 2021
132021
EMAP: Explanation by minimal adversarial perturbation
M Chapman-Rounds, MA Schulz, E Pazos, K Georgatzis
arXiv preprint arXiv:1912.00872, 2019
92019
Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets. Nat Commun 11, 4238
MA Schulz, BTT Yeo, JT Vogelstein, J Mourao-Miranada, JN Kather, ...
52020
On utilizing uncertainty information in template‐based EEG‐fMRI ballistocardiogram artifact removal
MA Schulz, C Regenbogen, C Moessnang, I Neuner, A Finkelmeyer, ...
Psychophysiology 52 (6), 857-863, 2015
42015
Emerging shifts in neuroimaging data analysis in the era of “big data”
D Bzdok, MA Schulz, M Lindquist
Personalized psychiatry: big data analytics in mental health, 99-118, 2019
32019
Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis
MA Schulz, S Hetzer, F Eitel, S Asseyer, L Meyer-Arndt, T Schmitz-Hübsch, ...
Iscience 26 (9), 2023
2*2023
Data augmentation via partial nonlinear registration for brain-age prediction
MA Schulz, A Koch, VE Guarino, D Kainmueller, K Ritter
International Workshop on Machine Learning in Clinical Neuroimaging, 169-178, 2022
12022
Label scarcity in biomedicine: Data-rich latent factor discovery enhances phenotype prediction
MA Schulz, B Thirion, A Gramfort, G Varoquaux, D Bzdok
arXiv preprint arXiv:2110.06135, 2021
12021
DeepRepViz: Identifying Potential Confounders in Deep Learning Model Predictions
RP Rane, JH Kim, A Umesha, D Stark, MA Schulz, K Ritter
International Conference on Medical Image Computing and Computer-Assisted …, 2024
2024
TLIMB-a transfer learning framework for image analysis of the brain
MA Schulz, JP Albrecht, A Yilmaz, A Koch, D Kainmüller, U Leser, K Ritter
CEUR Workshop Proceedings, 1-6, 2024
2024
Inferring disease subtypes from clusters in explanation space (vol 14, 6223, 2024)
MA Schulz, M Chapman-Rounds, M Verma, D Bzdok, K Georgatzis
SCIENTIFIC REPORTS 14 (1), 2024
2024
Do transformers and CNNs learn different concepts of brain age?
NT Siegel, D Kainmueller, F Deniz, K Ritter, MA Schulz
bioRxiv, 2024.08. 09.607321, 2024
2024
Machine Learning in Neuroimaging Psychiatry: Scaling Behavior, Constraints, and Limitations
MA Schulz
Technische Universität Berlin, 2024
2024
The system can't perform the operation now. Try again later.
Articles 1–20