Follow
Frederik Wilde
Title
Cited by
Cited by
Year
Stochastic gradient descent for hybrid quantum-classical optimization
R Sweke, F Wilde, J Meyer, M Schuld, PK Fährmann, ...
Quantum 4, 314, 2020
2792020
Noise can be helpful for variational quantum algorithms
J Liu, F Wilde, AA Mele, L Jiang, J Eisert
arXiv preprint arXiv:2210.06723 13, 2022
352022
Scalably learning quantum many-body Hamiltonians from dynamical data
F Wilde, A Kshetrimayum, I Roth, D Hangleiter, R Sweke, J Eisert
arXiv preprint arXiv:2209.14328, 2022
302022
An in-principle super-polynomial quantum advantage for approximating combinatorial optimization problems via computational learning theory
N Pirnay, V Ulitzsch, F Wilde, J Eisert, JP Seifert
Science Advances 10 (11), eadj5170, 2024
19*2024
Single-component gradient rules for variational quantum algorithms
T Hubregtsen, F Wilde, S Qasim, J Eisert
Quantum Science and Technology 7 (3), 035008, 2022
162022
Learning topological states from randomized measurements using variational tensor network tomography
Y Teng, R Samajdar, K Van Kirk, F Wilde, S Sachdev, J Eisert, R Sweke, ...
arXiv preprint arXiv:2406.00193, 2024
2024
Wärmeübertragung durch Strahlung über Parabolspiegel
F Wilde, L Leppin, R Hübner, T Müller
2014
The system can't perform the operation now. Try again later.
Articles 1–7