Global bifurcation theory and Hilbert’s sixteenth problem V Gaiko Springer Science & Business Media, 2013 | 149 | 2013 |
Multiple limit cycle bifurcations of the FitzHugh–Nagumo neuronal model VA Gaiko Nonlinear Analysis: Theory, Methods & Applications 74 (18), 7532-7542, 2011 | 41 | 2011 |
Global qualitative analysis of a quartic ecological model HW Broer, VA Gaiko Nonlinear Analysis: Theory, Methods & Applications 72 (2), 628-634, 2010 | 40 | 2010 |
Limit cycles of quadratic systems VA Gaiko Nonlinear Analysis: Theory, Methods & Applications 69 (7), 2150-2157, 2008 | 40 | 2008 |
The applied geometry of a general Liénard polynomial system VA Gaiko Applied Mathematics Letters 25 (12), 2327-2331, 2012 | 38 | 2012 |
Qualitative theory of two-dimensional polynomial dynamical systems: problems, approaches, conjectures V Gaiko Nonlinear Analysis 30 (3), 1385-1394, 1997 | 38 | 1997 |
On limit cycles surrounding a singular point VA Gaiko Differential Equations and Dynamical Systems 20, 329-337, 2012 | 35 | 2012 |
Limit cycle bifurcations of a general Liénard system with polynomial restoring and damping functions VA Gaiko International Journal of Dynamical Systems and Differential Equations 4 (3 …, 2012 | 32 | 2012 |
Global bifurcations of limit and separatrix cycles in a generalized Liénard system VA Gaiko, WT van Horssen Nonlinear Analysis: Theory, Methods & Applications 59 (1-2), 189-198, 2004 | 32 | 2004 |
Limit Cycles of Li´ enard-Type Dynamical Systems VA Gaiko CUBO, A Mathematical Journal 10 (3), 115–132-115–132, 2008 | 31 | 2008 |
On the geometry of polynomial dynamical systems VA Gaiko Journal of Mathematical Sciences 157, 400-412, 2009 | 29 | 2009 |
Hilbert’s sixteenth problem and global bifurcations of limit cycles VA Gaiko Nonlinear Analysis: Theory, Methods & Applications 47 (7), 4455-4466, 2001 | 28 | 2001 |
Maximum number and distribution of limit cycles in the general Liénard polynomial system VA Gaiko Adv. Dyn. Syst. Appl 10 (2), 177-188, 2015 | 25 | 2015 |
Limit cycle bifurcations of a special Liénard polynomial system VA Gaiko Adv. Dyn. Syst. Appl 9 (1), 109-123, 2014 | 22 | 2014 |
Wintner-Perko termination principle, parameters rotating a field, and limit-cycle problem VA Gaiko Journal of Mathematical Sciences 126 (4), 1259-1266, 2005 | 22 | 2005 |
Global dynamics in the Leslie–Gower model with the Allee effect VA Gaiko, C Vuik International Journal of Bifurcation and Chaos 28 (12), 1850151, 2018 | 21 | 2018 |
A quadratic system with two parallel straight-line-isoclines VA Gaiko Nonlinear Analysis: Theory, Methods & Applications 71 (11), 5860-5865, 2009 | 20 | 2009 |
Global qualitative analysis of a Holling-type system VA Gaiko International Journal of Dynamical Systems and Differential Equations 6 (2 …, 2016 | 18 | 2016 |
Global analysis of planar neural networks F Botelho, VA Gaiko Nonlinear Analysis: Theory, Methods & Applications 64 (5), 1002-1011, 2006 | 18 | 2006 |
BIFURCATION OF LIMIT-CYCLES OF A QUADRATIC SYSTEM WITH 2 CRITICAL-POINTS AND 2 FIELD-ROTATION PARAMETERS LA Cherkas, VA Gaiko Differential Equations 23 (9), 1062-1069, 1987 | 16 | 1987 |